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ABSTRACT 

Short-term Fourier Transform (STFT) forms the backbone of a 
great deal of modern digital audio processing. A number of pub-
lished implementations of this process exhibit time-aliasing dis-
tortion. This paper reiterates the requirements for alias-free pro-
cessing and offers a novel method of reducing aliasing. 

Index Terms— DFT, STFT, Convolution, Aliasing 

1. INTRODUCTION 

A number of DSP processing techniques employ the Short-term 
Fourier Transform (STFT). These include Non-negative Matrix 
Factorization [1][2], binary filtering [3], broadband denoising [4] 
and many others. Some implementations of these algorithms ex-
hibit significant audible artifacts. Some of the published imple-
mentations of these techniques show a lack of attention to issues 
of time-aliasing distortion, which is one form of artifact that can 
be audible and annoying. We show that all (synchronous) STFT 
processing is a form of linear filtering. This makes it straightfor-
ward to identify when time-aliasing is introduced and suggests 
ways to eliminate it. We introduce the concept of “brick-wall” 
windowing, implemented by a frequency-domain convolution to 
limit implied impulse response lengths. For binary filtering, we 
introduce the concept of an “atom” representing a single point in 
the frequency domain that has limited extent in time, thus allow-
ing alias-free binary filtering. 

2. HISTORICAL NOTE 

In 1966, Thomas G. Stockham, Jr., published a seminal paper [5] 
describing the implementation of digital convolution by use of the 
Fast Fourier Transform [6]. The point of mentioning Stockham is 
just to note that this technique has been known for at least 50 years. 
 
Since Stockham, a great deal of progress has occurred. Many mod-
ern DSP techniques have the computational paradigm of starting 
with one or more STFT (Short Term Fourier Transform) se-
quences, then producing a corresponding STFT sequence. The out-
put is then produced by taking the inverse FFT of each frame, then 
overlapping and adding into the output sequence. In the process, 
some examples of published implementation code violate, explic-
itly or implicitly, the basic principles enumerated by Stockham in 
1966. In this paper, we identify a common error leading to time-
aliasing and suggest a novel way to correct it. This paper is ex-
tracted from a more complete discussion in [7]. 

3. SHORT-TERM FOURIER TRANSFORM 

Let us define the padded STFT of an audio signal x(n) as follows: 

𝑋𝑋𝑘𝑘(𝑛𝑛) =  ∑ 𝑤𝑤(𝑚𝑚)𝑥𝑥(𝑛𝑛 −𝑚𝑚)𝑒𝑒2𝜋𝜋𝜋𝜋𝜋𝜋𝑘𝑘/𝑀𝑀𝑁𝑁−1
𝜋𝜋=0  (1)   

 
where 

n Time index 
k Frequency index, 0 ≤ 𝑘𝑘 < 𝑀𝑀 
N Number of input points per frame 
M Transform size (M≥N) 
w(m) Window function 

 
This calculation is performed at certain fixed time intervals that 
is called the “hop size” or the “frame rate”. 
 
From one or more of these sequences, we then produce a new 
STFT sequence 𝑋𝑋�𝑘𝑘(𝑛𝑛) . We can then synthesize an output se-
quence, 𝑥𝑥�(𝑛𝑛), by taking the inverse transform of each frame, then 
overlapping and adding to form the output.. 

4. STFT IS LINEAR FILTERING 

Knowing nothing about how 𝑋𝑋�𝑘𝑘(𝑛𝑛) was formed, what is the rela-
tion between 𝑋𝑋�𝑘𝑘(𝑛𝑛) and 𝑋𝑋𝑘𝑘(𝑛𝑛)? If the input and output frames 
have the same phases, then their relation is that the output is the 
result of applying a zero-phase filter to the input. This observa-
tion is independent of how the output frames were computed. We 
can make this explicit by calculating a gain function as follows: 
 

 𝐺𝐺𝑘𝑘(𝑛𝑛) ≡ 𝑋𝑋�𝑘𝑘(𝑛𝑛) 
𝑋𝑋𝑘𝑘(𝑛𝑛)

  
(2) 

 
Assuming we take care not to divide by zero, 𝐺𝐺𝑘𝑘(𝑛𝑛) is the transfer 
function of a zero-phase filter that will transform that input to the 
desired output. Since 𝐺𝐺𝑘𝑘(𝑛𝑛) defines a linear filter, it has an im-
pulse response, and what we are performing is a convolution. Note 
that the input and output frames need not have the same phase. In 
that case, the filter will not have linear phase, but it is still a linear 
filter and has an impulse response. In general, the transfer function 
will be different in each STFT frame and will represent a time-
varying filter. Limiting time-aliasing in each frame is sufficient to 
produce an alias-free overall result. 
 
 



5. IMPULSE RESPONSE AND CONVOLUTION 

How long is the impulse response of this filter? Can it be a single 
point? It is only a single point if the implied filter is just a gain 
change. Any other transfer function will have a non-trivial impulse 
response. Let us say that the impulse response of this filter is K 
points in length (or that it can be windowed to K points in length 
without excessive distortion). We know that we need the size of 
the transform to be at least N+K-1 in length or we will get time-
aliasing due to the circular nature of convolution in the digital do-
main [5]. Since these transfer functions are generated algorithmi-
cally from unknown data, we can generally only loosely bound the 
length of the impulse responses.  

6. LIMITING IMPULSE RESPONSE LENGTH 

How do we limit the length of the impulse response implied by the 
transfer function 𝐺𝐺𝑘𝑘(𝑛𝑛)? We can take its inverse transform, and if 
the significant part of the impulse response is less than M points in 
length, then we know that we can force its length to be less than 
M-N+1 by simple windowing in the time domain. If the inverse 
transform does not seem to die out over M points, then it is proba-
bly longer than M, and longer transforms (more padding) must be 
used, else time-aliasing distortion will be introduced. We must al-
ways use transforms long enough to encompass the longest im-
pulse response that the input/output transfer function can exhibit. 
Ideally, we would use a transform with enough padding so that the 
significant portion of the calculated impulse response of  𝐺𝐺𝑘𝑘(𝑛𝑛)  is 
less than M-N+1 points in length. 

7. IMPLEMENTING A “BRICK-WALL” WINDOW 

The process of time-limiting an impulse response is a well-known 
one. We multiply the first M-N points by a window function, then 
we zero the remaining points. This is analogous to a band-limiting 
filter, except that it is applied in the time domain. Since band-
limiting filters are often called “brick-wall” filters, we might call 
this a “brick-wall” window. Applying a time-domain window to 
the impulse response of 𝐺𝐺𝑘𝑘(𝑛𝑛) would appear to involve two con-
secutive FFTs – one to inverse transform 𝐺𝐺𝑘𝑘(𝑛𝑛) to the time do-
main for windowing, then one more to transform it back to the 
frequency domain for application. We can implement an approx-
imation to this process by a convolution in the frequency domain 
using the transform of the desired time-domain window function. 
The approximation comes by limiting the number of non-zero 
points in the frequency-domain convolution kernel. The more 
terms we use in the convolution kernel, the closer we come to the 
ideal brick-wall window, but at some point, the computational de-
mands exceed what would be required for the direct implementa-
tion involving two transforms noted above. 

8. AN EXAMPLE WINDOW KERNEL 

Let us illustrate the issue with a concrete example. We will take 
M = 2N, so that our input sequence will be taken N points at a 
time, and we will have to limit the length of the impulse response 
to N+1 points. For simplicity, let us round that down to just N 
points. In the time domain, we might choose a window for the 
impulse response to be N points of a Hamming window, followed 

by N zeros. Figure 1 shows a half-length Hamming window im-
plemented directly, versus an implementation as a frequency do-
main convolution of 𝐺𝐺𝑘𝑘(𝑛𝑛) with a 5-point kernel and a 7-point 
kernel. The exact values for the 7-point kernel are (-0.9854, 3.68,  
-7.0597, 8.64, -7.0597, 3.68, -0.9854).  For convenience, these 
kernels were generated by simply applying a 5 and 7-point rec-
tangular (Fourier) window to the exact transform of the half-
length Hamming window. There are surely better ways to pro-
duce suitable kernels. 
 
This simple 5-point convolution kernel gives us about 23-dB of 
rejection of the impulse response beyond N points. This is gener-
ally enough for most audio applications, unless the transfer func-
tion exhibits sharp slopes. The 7-point kernel gives over 30 dB of 
rejection. 

 
Figure 1: Half-length Hamming window used to produce a fre-
quency-domain convolution kernel to implement some 
amount of time windowing to suppress the impulse response 
beyond N points. Only the upper wing of the symmetric kernel 
is shown. 

9. SYNTHESIS FROM NMF IS LINEAR FILTERING 

NMF (“Non-Negative Matrix Factorization”) is a useful tool for 
a number of tasks. I will discuss one use of it here, which is the 
so-called “source separation” problem. In general, the idea is that 
you have two sounds that have largely independent statistics. We 
will use NMF to select spectral components thought to represent 
one source or another [1]. 
 
In NMF, we approximate a vector (such as a magnitude-spectrum 
of a bit of audio) by a weighted sum of other example vectors. We 
constrain the weights to be non-negative. Magnitude spectra of 
real sequences are, by definition, non-negative. We represent this 
factorization symbolically as follows:  
 

 𝑉𝑉 ≈ 𝑊𝑊𝑊𝑊 (3) 
Where 

V vector, such as a magnitude spectrum 
H matrix of many such vectors 
W matrix of non-negative weights 

 



An example of this source separation by NMF might be separating 
a mixture of male and female speakers talking simultaneously. 
You start by building to libraries, 𝑊𝑊𝜋𝜋  and 𝑊𝑊𝑓𝑓 , consisting of 
many, many magnitude spectra of male speech and female speech. 
We then take the speech mixture to be separated and represent it 
by a sequence of transforms taken at some frame rate and the same 
frame size as those in the libraries. For each frame, we then ap-
proximate the magnitude spectrum first using the male library 
then the female library. The phases are generally taken directly 
from the input mixture. There are many techniques available for 
calculating the weights in clever and efficient ways [2]. As noted 
in [1], constraints can be applied to guide the process. Ultimately, 
however the resulting magnitude spectrum is computed, we end 
up with a sequence of frames, 𝑋𝑋�𝑘𝑘(𝑛𝑛). Consequently, for each 
frame, we can compute the transfer ratio of a zero-phase filter, 
𝐺𝐺𝑘𝑘(𝑛𝑛), as noted in equation (2). This transfer function has an im-
pulse response that may or may not be longer than M-N+1 points 
in length. Figure 2 shows an example of the inverse transform of 
one frame of 𝑋𝑋�𝑘𝑘(𝑛𝑛) taken from a NMF source-separation task 
with M=2N. 

 
Figure 2: An example of a synthesized output frame from an 
NMF separation task with 2:1 padding (M=2048, N=1024). 
Middle plot is implied magnitude transfer function. Bottom is 
centered impulse response of implied transfer function 

In the case shown, the length of the impulse response correspond-
ing to  𝐺𝐺𝑘𝑘(𝑛𝑛) is clearly greater than or equal to N+1 points. With-
out padding or windowing, there will be time-aliasing that may be 
audible. 
 
Note also that the impulse response of  𝐺𝐺𝑘𝑘(𝑛𝑛) extends both back-
wards and forwards in time. This is a natural characteristic of a 
zero-phase filter. In addition to adding sufficient padding and 
possibly limiting the length of the impulse response of 𝐺𝐺𝑘𝑘(𝑛𝑛), it is 
necessary to circularly shift the synthesized frame by (M-N)/2 
points. Adding padding by itself without circularly shifting the re-
sult before the overlap-add step leaves a discontinuity at the be-
ginning and end of the frame that will be audible. Note that the 
shift can be done on input. That is, rather than padding the input 
data by annexing zeros, one may imbed the windowed input data 
in the middle of the analysis window with an equal number of 
zeros before and after the input data. The centering has to be done 
somewhere – either on the input side or the output side. Note that 
in many cases, it is sufficient to add centering and padding to 

NMF to reduce time aliasing to inaudible levels. That is, it is often 
not necessary to explicitly window the impulse response of the 
implied transfer function, but simply to use sufficient padding 
(e.g. 4:1 or 8:1) and centering the data in the window, trusting that 
the filters produced will not be too sharp. Much of the time, this 
will be the case. 

10. BINARY FILTERING IS STILL FILTERING 

It is sometimes interesting to construct a “binary” filter. That is, a 
filter with a magnitude transfer spectrum that consists of only 
ones and zeros [3]. Although this is somewhat of an artificial con-
straint, as any natural sound may have contributions to each time-
frequency point from a number of sources, the restriction to ones 
and zeros greatly simplifies the separation algorithm design. 
Without interpreting the ones and zeros, we can independently 
raise the question of audio quality. That is, given a desired transfer 
function in the form of a binary mask, how do we make it sound 
as good as possible? We start by examining the sources of distor-
tion. In this paper, we look at only one type of distortion, which 
is time aliasing. 
 
The previous discussion about padding assumes that the implied 
transfer function impulse response decays to zero, so that making 
the analysis window larger (i.e. increasing the amount of padding) 
will always result in an impulse response that decays below any 
arbitrary threshold level. It is reasonable to ask when this is true 
and when it is not. 
 
Consider the impulse response of a single time-frequency point. 
This can be considered the “atom” of binary filtering. A single 
point in the frequency domain, surrounded by zeros, is the only 
signal that does not decay with time. If we even have two consec-
utive non-zero points, the impulse response will decay and in-
creasing padding will always reveal an impulse response that is 
effectively time-limited. Unfortunately, the selection algorithms 
for source separation involving binary masks often produce iso-
lated frequency points. How can we deal with this? There are sev-
eral choices: 
 

1. We could always require 2 or more adjacent frequency 
points to be non-zero and work that requirement into the 
selection algorithm. If more precision in the frequency 
domain is required, additional padding can always be 
used to increase the number of frequency points. 

2. Although we compute a binary mask, we could synthe-
size a slightly different transfer function to actually per-
form the filtering just for auditioning. For example, af-
ter the binary mask is computed, we could then re-ana-
lyze the input using a 3:1 padding. At every frequency 
in the original mask that is one, we could place a 3-point 
Hamming window kernel – that is, (-.23, .54, -.23), cen-
tered on the frequency of the non-zero point in the orig-
inal mask. This changes the “atom” to a function that is 
known to decay. This technique can be expanded to 5-
point kernels, such as Blackman windows, or even 
higher-order kernels [4]. We can make time-limited 
functions to approximate sequences of any number of 
consecutive unit frequency bins. As noted in [4], these 
functions have closed-form formulas both in the time 



and frequency domains. This suggestion is, in fact, an-
other implementation of windowing through frequency-
domain convolution as previously described. 

3. Any other method could be used to “smooth” the fre-
quency response. The smoothing need not be done us-
ing a linear frequency scaling, but could be adjusted to
be a Bark scale, equal-octave, or any other grouping.
The more smoothing that is used, the more the response 
deviates from the original binary mask, but this can be
remediated by increasing the padding which increases
the frequency precision accordingly. By increasing the
padding, the resulting frequency response can be made
to approximate the original binary mask arbitrarily pre-
cisely.

Figure 3 shows one example of a time-limited “atom” that can be 
used to implement each non-zero frequency point. This atom was 
produced by the use of 1:8 padding, and consists of five consecu-
tive 5-point Blackman window kernels. This is an approximation 
to a bandpass filter with a width corresponding roughly to that of 
a single point in the original binary mask. Although this is suffi-
cient to guarantee freedom from time-aliasing, other artifacts due 
to sharp band-edges will dominate. Some amount of frequency-
domain smoothing would be necessary to reduce this remaining 
form or artifact. 

Figure 3: Windowed and time-limited approximation to a spectral 
impulse at frequency bin 25. This was produced by starting with 
a spectrum of an impulse response padded 1:8. Five consecutive 
sets of 5-point Blackman window coefficients were summed to 
produce a filter roughly one unit wide in the original (unpadded) 
domain. 

The frame rate interacts with the window chosen for the approxi-
mation. We know that the Hamming and Hann windows can be 
used the a hop size of N/2 without introducing any time-domain 
amplitude modulation. Use of a 2nd-order window, such as Black-
man, requires us to reduce the hop size to N/4 to eliminate ampli-
tude modulation. 

Some researchers are using “soft masks” rather than strict binary 
filtering, e.g. [8]. This relaxes the constraint that each frequency 
point be either 0 or 1. By itself, of course, this does not guarantee 
freedom from time-aliasing. Steps must still be taken to limit the 
implied impulse response length. 

11. SUMMARY

Processing using the short-term Fourier transform can be formu-
lated as a linear filter, regardless of how the output magnitude 
spectra are generated. As such, the transfer function for each frame 
can be analyzed to determine if it introduces time-aliasing distor-
tion. We introduce a novel frequency-domain convolution that im-
plements an approximation to a “brick-wall” window function. In 
many cases, simple padding and “centering” of the analysis data is 
sufficient to reduce time-aliasing distortion to inaudibility. For 
more radical filters, such as binary filters, time-aliasing can only 
be reduced in general by some kind of smoothing in the frequency 
domain. One solution involves replacing the “atom” with a kernel 
that is known to decay to zero and increasing the padding size to 
accommodate the chosen kernel. The frame rate may also need to 
be increased to avoid amplitude-modulation distortion. 

In all cases, however, formulating STFT processing as a linear fil-
tering operation leads us directly to these guidelines and tech-
niques such that time-aliasing distortion can always be avoided 
with relatively modest penalties in time and/or complexity. 
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